Альшауа Р. (науч. рук. Борисов И.И.) Reinforcement learning with behavior primitives for manipulation tasks
This paper examines the integration of behavior primitives into reinforcement learning for robotic manipulation. Primitives break tasks into structured actions, enhancing learning efficiency, adaptability, and generalization. A hierarchical approach improves decision-making, while affordance-based exploration optimizes learning. Key challenges include designing effective primitives and ensuring real-world robustness.
Альшауа Р. (науч. рук. Борисов И.И.) Reinforcement learning with behavior primitives for manipulation tasks // Сборник тезисов докладов конгресса молодых ученых. Электронное издание. – СПб: Университет ИТМО, [2025]. URL: https://kmu.itmo.ru/digests/article/15372