Личный кабинет

Статья

Кузнецов И.С. (науч. рук. Фильченков А.А.) Solving Continuous Control with Episodic Memory
УДК тезиса: 004.8

Episodic memory lets reinforcement learning algorithms remember and exploit promising experience from the past to improve agent performance. Previous works on memory mechanisms show benefits of using episodic-based data structures for discrete action problems in terms of sample-efficiency. The application of episodic memory for continuous control with a large action space is not trivial. Our study aims to answer the question: can episodic memory be used to improve agent's performance in continuous control? Our proposed algorithm combines episodic memory with Actor-Critic architecture by modifying critic's objective. We evaluate our algorithm on OpenAI gym domains and show greater sample-efficiency compared with the state-of-the art model-free off-policy algorithms.

Авторы:

Кузнецов Игорь Сергеевич

Руководитель:

Фильченков Андрей Александрович

Кузнецов И.С. (науч. рук. Фильченков А.А.) Solving Continuous Control with Episodic Memory // Сборник тезисов докладов конгресса молодых ученых. Электронное издание. – СПб: Университет ИТМО, [2022]. URL: https://kmu.itmo.ru/digests/article/6818