Личный кабинет

Статья

Дас С. (науч. рук. Зун П.С.) Ai to optimize myoblast transplantation for muscle repair
УДК тезиса: 004.932.72'1

Myoblast transplantation is a key approach in regenerative medicine, requiring effective tracking of live cells for successful integration and muscle repair. Manual tracking is impractical, and machine learning offers a viable alternative despite challenges such as unstained, irregularly shaped cells. This study develops a generalized model for shape-invariant segmentation, minimizing dependence on rigorously trained models. Using unsupervised and semi-supervised learning methods, the model integrates clustering, statistical techniques, and neural networks. An autonomous tool with a user-friendly GUI analyzes cell behavior and generates reports. Results show that unsupervised learning with calibration enables reliable segmentation and prediction, advancing regenerative medicine.

Авторы:

Дас Сураджит

Руководитель:

Зун Павел Сергеевич

Дас С. (науч. рук. Зун П.С.) Ai to optimize myoblast transplantation for muscle repair // Сборник тезисов докладов конгресса молодых ученых. Электронное издание. – СПб: Университет ИТМО, [2025]. URL: https://kmu.itmo.ru/digests/article/15466