Исследование малорасходных ступеней центробежных компрессоров для холодильных установок

Карташов С.В. (Университет ИТМО), Кожухов Ю.В. (Университет ИТМО)

Научный руководитель – кандидат технических наук, доцент Кожухов Ю.В. (Университет ИТМО)

Введение. Центробежные компрессоры используются в парокомпрессионных холодильных машинах и установках. В качестве объекта исследования выступает малорасходная ступень СВД-1 с условным коэффициентом расхода Ф=0,008 и коэффициентом теоретического напора Чт=0,48. Численное моделирование играет ключевую роль в проверке результатов проектирования центробежных компрессоров [1, 2, 3]. В настоящей работе для моделирования рабочего процесса малорасходной центробежной компрессорной ступени используется программный комплекс Numeca Fine/Turbo.

Рассматривается начальный этап создания численной модели малорасходных ступеней: выбор расчетной области и сеточной модели. Рассмотрен вопрос сеточной независимости решения расчетной модели в рабочем тракте ступени и притрактовых областях. Показано, что обеспечение сеточной независимости решения в притрактовых областях малорасходной ступени важно не менее, чем в лопаточных аппаратах проточной части. Оценено влияние безразмерного расстояния первого пристеночного слоя у+ при использовании низкорейнольдсовой модели турбулентности Spalart-Allmaras [4, 5].

Основная часть. Для проточной части (ПЧ) ступени, имеющей два лопаточных венца — рабочее колесо (РК) и обратно-направляющий аппарат (ОНА) с одним рядом лопаток, будет показательно привести результаты исследования в зависимости от общего количества сеточных элементов в модели (элементы разделяются примерно поровну между венцами). Варьирование количества ячеек сеточной модели ступени производилось в диапазоне от 0,4...7,2 млн. По результатам моделирования необходимый и достаточный размер сетки для ПЧ $\sim 3,5$ млн. ячеек на 2 лопаточных венца при характерном размере ПЧ D_2 =352 мм. Дальнейшее измельчение сетки нецелесообразно ввиду неизменности результатов моделирования при значительном увеличении сеточной модели не только за счет ПЧ, но и за счет полностью стыкуемых притрактовых областей, в которые переносится тангенциальное распределение элементов РК и ОНА.

Оценка влияния у+ при использовании низкорейнольдсовой модели турбулентности показывает важность обеспечения сеточной независимости по размеру первого пристеночного элемента. При среднем значении у+ 0,1...1,0 КПД расчетного режима газодинамическх характеристик (ГДХ) можно условно назвать постоянным, незначительно повышающимся при существенном уменьшении первого элемента до значений у+ \sim 0,1, которое тоже можно считать не вполне корректным. При повышении у+>1 КПД сначала достаточно резко повышается на 1,5%, затем присутствует участок снижения на 3,5% и дальнейший степенной рост при повышении у+ до 50 и дальнейшей несходимости решения. В общем случае, характер зависимости параметров от у+ может принимать случайную форму и данный пример можно рассматривать как оценку влияния отклонения сеточного критерия от рекомендаций по корректной работе моделей турбулентности.

Выводы. По результатам исследования показано принципиальное значение обеспечения сеточной независимости решения при моделировании малорасходных

ступеней центробежных компрессоров. При неаккуратном подходе к выбору размера сеточной модели и размера первого пристеночного элемента ГДХ ступени будет сильно отличаться. Для КПД: в пределах 5% для сеточной модели в основной ПЧ и 6% для модели в притрактовых областях. Причем влияние последнего можно рассматривать даже как более значительное, так как сеточная модель влияет одновременно и на коэффициенты потерь трения дисков, протечек, и на теоретический напор колеса за счет изменения закрутки газа на входе в РК. В качестве рекомендации к построению сеток необходимо отметить, что обеспечение сеточной независимости происходит при достаточно густом визуальном насыщении расчетными ячейками сеточной модели. Также важно контролировать значение у+, являющееся безразмерным расстоянием до стенки, в соответствии с используемой моделью турбулентности – для низкорейнольдсовых версий моделей – у+<1.

Список использованных источников:

- 1. Рахманина Л.А., Аксенов А.А. Исследование влияния неравномерного распределения абсолютной скорости потока на входе в осерадиальное рабочее колесо центробежного компрессора с применением методов численного моделирования в Ansys CFX. Компрессорные технологии №2, 2019. С. 18-25.
- 2. Aksenov A.A., Danilishin A.M., Kozhukhov Y.V., Simonov A.M. Numerical simulation of gas-dynamic characteristics of the semi-open 3d impellers of the two-element centrifugal compressors stages. AIP Conference Proceedings Cep. "Oil and Gas Engineering, OGE 2018" 2018. C. 030025. DOI:10.1063/1.5051886.
- 3. Danilishin A.M., Kozhukhov Y.V., Neverov V.V., Malev K.G., Mironov Y.R. The task of validation of gas-dynamic characteristics of a multistage centrifugal compressor for a natural gas booster compressor station. AIP Conference Proceedings Cep. "Oil and Gas Engineering, OGE 2017" 2017. C. 020046. DOI:10.1063/1.4998866.
- 4. Карташов С.В., Кожухов Ю.В. Обоснование выбора расчетной области в задачах моделирования вязкого потока в малорасходных ступенях центробежного компрессора. Журнал: Холодильная техника. №1. 2020. Издательский дом «Холодильная техника». С. 22 27.
- 5. Карташов С.В., Кожухов Ю.В. Выбор сеточной модели и оценка влияния измерительных приборов в задачах моделирования вязкого потока в малорасходных ступенях центробежного компрессора. Журнал: Холодильная техника. №3. 2020. Издательский дом «Холодильная техника». С. 18 23.