УДК 541 A THEORETICAL INVESTIGATION OF CALIXARENE-BASED SUPRAMOLECULAR SYSTEMS FOR VOC DETECTION Ashina Yu.S. (ITMO University) Supervisor – Ph.D., associate professor Muravev A.A. (ITMO University)

Introduction. Volatile organic compounds (VOCs) serve as critical biomarkers for early lung cancer detection, driving demand for developing selective sensor materials. Calixarenes – macrocyclic molecules with tunable cavities and host-guest capabilities – are promising candidates for such applications due to their ability to recognize small organic analytes through non-covalent interactions. While computational methods, including those based on density functional theory (DFT) reliably model these interactions and correlate well with experimental binding trends [2], their predictive accuracy to a significant extent depends on the choice of functional and the specific physicochemical properties of the system. This study evaluates three DFT functionals to identify the optimal approach for modeling calixarene-VOC interactions.

Main part. 11 calixarene derivatives were evaluated for their ability to bind two clinically relevant lung cancer-associated VOCs: propanol-1 and acetonitrile. Host-guest interactions were modeled using density functional theory (DFT) to compute molecular descriptors (e.g., dipole moments, molecular area2) and Gibbs free energy (Δ G) of complex formation. Three hybrid DFT functionals – B3LYP, PBE0, and r²SCAN – were tested to assess their performance in predicting calixarene-VOC binding.

Conclusion. In this study, analyte-specific behavior of calixarene derivatives was analyzed in order to select optimum functional for modelling calixarene-VOC interaction. In future, the described functional-dependent variance will provide a roadmap for descriptor-driven screening of calixarene-VOC supramolecular systems.

References:

- Davis F., Higson S. P. J., Oliveira Jr O. N., Shimizu F. M. Calixarene-Based Gas Sensors // Functional Nanomaterials: Advances in Gas Sensing Technologies / Thomas S. и др. --Singapore: Springer Singapore, 2020. -- C. 433-462.
- 2. Gassoumi B., Ghalla H., Chaabane R. B. DFT and TD-DFT investigation of calix[4]arene interactions with TFSI- ion // Heliyon. -- 2019. -- 2019/11/01/. -- T. 5, № 11. -- C. e02822.