УДК 621.594

ФИЗИЧЕСКАЯ МОДЕЛЬ ПРОЦЕССА ДЕСУБЛИМАЦИИ ПАРОВ ВОДЫ. Кравченко Д.В. (ИТМО), Баранов А.Ю. (ИТМО)

Научный руководитель – доктор технических наук, профессор Баранов А.Ю. (ИТМО)

Введение.

Сжиженный природный газ является уникальным источником энергии. Ежегодно использование природного газа в качестве топлива в мире растет на 2,4%, к 2030 г. объемы его потребления удвоятся, и около 26% всего сжигаемого углеводородного сырья будет приходиться на газ. Сегодня крупнейшими потребителями газа являются промышленность (45%) и электроэнергетика (33%). До недавнего времени самым надежным и распространенным способом доставки природного газа до потребителя являлась транспортировка по газопроводам. Основным недостатком такого способа является продолжительно строительство газопроводов и первоначальная их стоимость. В настоящее время все большую распространенность набирает метод транспортировки морским путем. Для этого необходимо соорудить завод для сжижения газа, так как в танкерах перевозится не сжатый как в газопроводах, а сжиженный газ. Преимуществом этого способа является возможность перевозки газа на большие расстояния морским путем. Сжиженный природный газ помимо основного энергетического потенциала в виде тепловой энергии имеет еще одно весомое преимущество относительно компримированного. В нем заключена скрытая холодная энергия.

Основная часть.

Сжиженный природный газ обладает низкотемпературным потенциалом, заложенным при его производстве. Для того чтобы из него можно было извлечь полезную работу его нужно перевести из жидкой фазы в газообразную, то есть регазифицировать. В крупных регазификационных установках в качестве источника теплоты используют, к примеру морскую воду, которая лучше подводит теплоту и доступна для регазификационных терминалов. В случаях отсутствия источника морской воды применяют печи, в которых сжигают часть газа для того, чтобы получить на выходе природный газ с достаточно высокой температурой, либо используют электрический нагрев. С точки зрения самой технологии процесс регазификации СПГ за счет десублимации паров воды будет сводиться к вымораживанию паров воды при давлении ниже тройной точки на теплообменнике. Низкая температура вымораживающей поверхности обеспечивает перепад парциальных давлений паров воды и чем больше его значение, тем интенсивней диффузия водяных паров из точки, где они выделяются к поверхности вымораживания.

Для того чтобы разработать технологический процесс, необходимо исследовать процесс выпадения инея на поверхности охлаждаемой СПГ и подобрать оптимальные параметры теплообменника десублиматора.

Выводы. Представленная физическая модель десублимации паров воды будет использоваться использования для проведения численных экспериментов.

Список использованных источников:

- 1. Тихонов А.И., Самарский А.А. Уравнения математической физики М.: Наука, 1977.
- 2. Напалков Г.Н. Тепломассоперенос в условиях образования инея. М.: Машиностроение, 1983.
- 3. Ривкин С.Л., Александров А.А. Термодинамические свойства воды и водяного пара. Справочник. М.: Энергоатомиздат, 1984

- 4. Кошкин В.К., Калинин Э.К. Дрейцер Г.А. Ярхо С.А. Нестационарный теплообмен– М.: Машиностроение, 1973.
- 5. Анфимов Н.А. Теплопередача при низких температурах. М.: Издательство иностранной литературы, 1977.
- 6. Федорова Е.Б. Современное состояние и развитие мировой индустрии сжиженного природного газа: технологии и оборудование. М.: РГУ нефти и газа имени И.М. Губкина, 2011.