
UDC 004.4 
PURE OP-BASED REPLICATED LIST WITH CARDINALITY CONSTRAINTS 

Semenov G.V. (ITMO University) 
Научный руководитель – к.ф.-м.н. Грищенко В.С. (НИУ ВШЭ) 

 
Introduction. Distributed systems and local-first applications employ an optimistic replication 
approach to ensure high availability of data. Generally, a conflict resolution strategy shall be 
presented to merge divergent revisions of data and ensure system-wide eventual consistency. 
Conflict-free replicated data types avoid this problem by implying a semilattice (state-based CRDT, 
or CvRDT) or a commutative operational basis in presence of causally-ordered broadcast protocol 
(op-based CRDT, or CmRDT). Portfolio of known CRDTs features various types of counters, 
registers, collections, collaborative editing types, graphs etc. 
 
Generally, a replicated list is a CmRDT providing a dynamic array interface with modifying 
operations of insertion and deletion by index. Though it is clear that insertion operations at the same 
index cause conflict in terms of user intentions, they are deemed conflict-free in presence of causal 
relationship (e.g. vector clock) or a partial ordering tag (e.g. unix timestamp). Various 
implementations of replicated lists are known, such as WOOT, Treedoc, Causal Tree, RGA, 
Chronofold, Fugue etc. 
 
In this thesis a simple pure op-based replicated list data type implemented using a Cartesian tree set 
– replicated dense list – is proposed. It is constructed on an ordered dense space, supports range 
move operation and is implementation-agnostic. Furthermore, it facilitates manual conflict 
resolution made by users a posteriori to restore original intentions. We also show that additional 
cardinality semantics may be seamlessly added to a dense list. 
 
Main part. Firstly, we define tag space , where  and  are disjoint dense sets 𝑇 = 𝑇

+
,  𝑇

−
,  𝐹( ) 𝑇

+
𝑇

−
of anchors and tombstones with a total order and homomorphism . We will be 𝐹:  𝑇

+
 ↔ 𝑇

−
considering a rational tag space . 𝑅 =  ℜ

+
, ℜ

−
, −( )

 
Dense list on a tag space  is a generic set  of items  where . We define 𝐿  𝑇 𝐼 𝑖 = (𝑡,  𝑣) 𝑖 ∈ 𝐼,  𝑡 ∈ 𝑇
list tag sets as , , . Dense list 𝑇(𝐿) ≡ {𝑡 | ∃ (𝑡, 𝑣) ∈ 𝐼} 𝑇

+
(𝐿) = 𝑇(𝐿) ∩ 𝑇

+
𝑇

−
(𝐿) = 𝑇(𝐿) ∩ 𝑇

−
item index  of item  is defined as a rank position of  within anchor tag list . #𝑖 𝑖 = (𝑡,  𝑣) 𝑡 𝑇

+
(𝐿)

 
Replicated dense list (RDL) is a dense list where item set  is a grow-only set of last-write-wins tag 𝐼
registers with associated item values. In other words, RDL is a pure [1] op-based CRDT with a 
low-level operational basis of spawning a list item and modifying its tag value. It is worth noticing 
that RDL does not require a specific clock type, so LWW registers may even use a real time clock. 
Let us define list interface operations on a RDL. 
 
Operation with intention of inserting value  after element  which is locally followed 𝑣 𝑖' = (𝑡',  𝑣')
by  is expressed as inserting element  to a grow-only set I, where  𝑖'' = (𝑡'',  𝑣'') 𝑖 = (𝐾(𝑡',  𝑡''),  𝑣) 𝐾
is an arbitrary kernel operator on a tag space . 𝑇
 
Operation with intention of deleting item  is expressed as applying homomorphism F on 𝑖 = (𝑡,  𝑣)
an anchor, which is in practice setting a negative bit in the item tag register. Deleted items 
correspond to tombstone tags and are not visible in the list. Garbage collection of tombstones may 
be implemented using an identification of causally stable [1] item deletions. However, it seems 
difficult to physically remove items without vector clock timestamps associated with operations 
which inevitably lead to metadata overhead problems and linear size of each operation. 



 
Operation with intention of moving a single item  from its current position to the position 𝑖 = (𝑡,  𝑣)
between items  and  is expressed as changing  to , similar to 𝑖' = (𝑡',  𝑣') 𝑖'' = (𝑡'',  𝑣'') 𝑡 𝐾(𝑡',  𝑡'')
insertion operation. Naive range extension of this operation can be a composition of single move 
operations. 
 
Though RDL item set may be implemented in various ways, a self-balancing Cartesian tree set 
provides implicit key indexing for  and a way to move ranges of RDL items for  𝑂(𝑙𝑜𝑔 𝑛) 𝑂(𝑙𝑜𝑔 𝑛)
complexity. Formally, a Cartesian tree is a binary tree of <x, y> tuples with a binary search tree 
property by x and a max heap property by y. Treap (tree + heap) is a self-balanced binary search tree 
which is constructed as a Cartesian tree with randomly distributed y. Insertion and deletion 
operations are compound of split and merge operations and their amortized complexity is O(log n). 
 
RDL facilitates user-driven intention conflict resolution by modifying item anchors a posteriori. 
Thus, explicit order of simultaneous insertion operations may be restored by changing anchor value 
on a desired group of items. Interleaving problems may be resolved by choosing a kernel operator 
tolerant to range insertions. 
 
Replicated object models may require additional constraints on collection cardinality, i.e. minimum 
and maximum allowed list size. In general, it is impossible to satisfy these rules within 
optimistically replicated collaboration, because concurrent insertion or deletion operations on 
various items lead to cardinality overflow or underflow. We show that RDL is able to preserve size 
constraints by weakening intention preservation property while preserving eventual consistency. 
 
Let us consider a RDL with inclusive cardinality range constraint  with initially spawned [𝑎, 𝑏]

elements. Then we can redefine dense list item index  of item  as a rank 𝑠
𝑖𝑛𝑖𝑡𝑖𝑎𝑙

≥ 𝑠
1
 #𝑖 𝑖 = (𝑡,  𝑣)

position of  within . Informally, when maximum 𝑡 𝑚𝑖𝑛
𝑏
(𝑇

+
(𝐿)) ∪ 𝑚𝑎𝑥

𝑚𝑎𝑥(0, 𝑎 − |𝑇
+

(𝐿)|)
(𝑇

−
(𝐿)) 

cardinality constraint is violated, odd elements are omitted while being persisted in the item set. On 
the contrary, when there is cardinality underflow, tombstone elements are resurrected on their 
previous positions until cardinality constraint is met. Tombstone elements which precede  greatest 𝑎
elements can be safely garbage collected. 
 
RDL can be compared with existing replicated list data types. FugueMax [2] operates on a similar 
tag mechanism to reduce interleavings. Treedoc implements dense order within a tree, but requires 
rebalancing which is nontrivial. RGA uses a similar linked list idea with logical timestamps as an 
improvement over WOOT. 
 
Conclusion. Thus, a replicated list data type with total order on a dense space with clear semantics 
is presented. It is simple and does not necessarily require strong causality preservation mechanisms 
by introducing pure commutativity of operations. Further research involves experimental study of 
RDL performance, design of kernel operators which minimize interleavings and object framework 
design based on RDL. 
 
References: 
1. Baquero, C., Almeida, P. S., & Shoker, A. (2017). Pure operation-based replicated data types. 
arXiv preprint arXiv:1710.04469. 
2. Weidner, M., & Kleppmann, M. (2023). The Art of the Fugue: Minimizing Interleaving in 
Collaborative Text Editing. arXiv preprint arXiv:2305.00583. 


