УДК 681.78, 535.317

РАЗРАБОТКА ЛАБОРАТОРНОГО МАКЕТА УСТАНОВКИ ДЛЯ КОНТРОЛЯ ОПТОВОЛОКОННЫХ КОННЕКТОРОВ

Утробин Е.С. (ИТМО)

Научный руководитель – кандидат технических наук, доцент Романова Г.Э. (ИТМO)

Введение. Оптоволоконные коннекторы с расширенным пучком применяются в случаях, когда система работает в сложных условиях внешней среды. Расширенный пучок позволяет обеспечить меньшее влияние на характеристики системы пыли и других загрязнений [1,2]. Расширение пучка достигается за счет применения миниатюрных шариковых линз. Допуски на позиционирование подобных линз достаточно жестки (порядка десятков микрон), поэтому соответствующая механическая часть коннектора должна быть изготовлена с высокой точностью. В работе представлен способ контроля и описание лабораторной установки, позволяющей обеспечить контроль точности изготовления оправы коннектора.

Основная часть. При изготовлении механической части оптоволоконного коннектора необходимо обеспечить высокую точность изготовления отверстия для соответствующего позиционирования шариковой линзы. Типичная требуемая точность составляет $\pm 10....20$ мкм. Для контроля таких значений можно воспользоваться установкой, построенной с использованием микрообъектива:

- для подсветки объекта используется кольцевая подсветка;
- для проекции изображения с высоким разрешением используется микрообъектив (20 х 0,28 Mitutoyo Plan Apo SL Infinity Corrected [3];
 - для регистрации изображения используется камера с объективом f' = 200 мм;
- для наблюдения всего поля (8-14 мм) необходимо сканирование за счет подвижного столика, а также сшивка изображений.

Для управления подвижным столиком разработан алгоритм в программе LabView [4]. Для сшивки серии изображений можно использовать алгоритм, реализованный на языке Python с использованием библиотеки OpenCV.

В работе рассматриваются особенности реализации лабораторной установки и особенности работы с ней при контроле шариковых коннекторов.

Выводы. Представлено описание лабораторной установки для контроля точности изготовления оправы оптоволоконного коннектора, а также описаны особенности работы при контроле шариковых коннекторов с использованием микрообъектива и цифровой регистрации изображения.

Список использованных источников:

- 1. Cinch Connectors Expanded Beam Technology White Paper
- 2. YONG-GEON LEE, CHANG-HYUN PARK, SEON-WOO BACK, HAENG-JEONG KIM, SANG-SHIN LEE //Alignment tolerant expanded beam connector based on a gapless fiber–lens interface, Applied Optics 2016. Vol. 55, No. 2
- 3. [Электронный pecypc] // EdmundOptics : [сайт]. URL: https://www.edmundoptics.com/p/20x-mitutoyo-plan-apo-sl-infinity-corrected-objective/6828/ (дата обращения: 15.01.2025).
- 4. [Электронный ресурс] // NI : [сайт]. URL: https://www.ni.com/en/support/downloads/software-products/download.labview.html#559067 (дата обращения: 17.01.2025).