ИДЕНТИФИКАЦИЯ ПИГМЕНТА ВОЛКОНСКОИТА МЕТОДОМ ФУРЬЕ-СПЕКТРОСКОПИИ

Пузырёва С.В. (ИТМО) Научный руководитель— кандидат физико-математических наук, доцент Асеев В.А. (ИТМО)

Введение. При изготовлении красок для живописи в качестве пигментов широко используются природные минералы. Изучение таких пигментов естественно-научными методами позволяет получать информацию, использующуюся при реставрации или проведении атрибуции объектов живописи. Зеленый пигмент волконскоит относится к группе каолинитов (водных алюмосиликатов). Его химическая формула: CaO_3 (Cr^{3+} , Mg^{2+} , Fe^{2+})2 (Si, Al)4 O_{10} (OH)2 · $4H_2O$. Структура волконскоита относится к моноклинной сингонии, что проявляется в значительном количестве характеристических пиков на дифрактограммах. В его составе возможны значительные замещения одних щелочных металлов другими, из-за чего положения пиков на дифрактограммах могут смещаться на значительные углы.

К группе природных алюмосиликатов, которые использовались для получения зеленых пигментов, относятся в том числе минералы глауконит и селадонит, кристаллическая структура которых также относится к моноклинной сингонии. В связи со схожестью химических составов данных минералов, их кристаллических структур и низкой степени изученности волконскоита могут возникать затруднения при идентификации этого пигмента на объектах живописи.

Основная часть. Идентификация большинства пигментов в настоящее время производится при помощи неразрушающих методов исследования, что учитывалось при поиске оптимальной методики, позволяющей отличать волконскоит от глауконита и селадонита на предметах живописного искусства. Исследование образцов пигментов этих минералов (производитель: ООО "Натуральные пигменты" г. Москва), производилось с помощью Рамановской и Фурье спектроскопии [1], [2]; а также с помощью рентгенофлуоресцентного анализа.

Выводы. Наиболее оптимальным методом, позволяющим идентифицировать волконскоит на предметах живописи, по результатам исследования признан метод Фурье спектроскопии, для которого были определены характеристические пики перечисленных минералов.

Список использованных источников:

- 1. Rosi, F., Cartechini, L., Sali, D. and Miliani, C. Recent trends in the application of Fourier Transform Infrared (FT-IR) spectroscopy in Heritage Science: from micro- to non-invasive FT-IR // Physical Sciences Reviews. − 2019. − vol. 4. − №11. − pp. 20180006.
- 2. Khan, S.A., Khan, S.B., Khan, L.U., Farooq, A., Akhtar, K., Asiri, A.M. Fourier Transform Infrared Spectroscopy: Fundamentals and Application in Functional Groups and Nanomaterials Characterization. // Handbook of Materials Characterization. 2018. pp.317-344.