НАКОПЛЕНИЕ ТЯЖЕЛЫХ МЕТАЛЛОВ В ДОННЫХ ОТЛОЖЕНИЯХ МАЛЫХ РЕК РЕСПУБЛИКИ КОМИ В РАЙОНАХ ИНТЕНСИВНЫХ ЛЕСОЗАГОТОВОК

Динкелакер Н.Ф.Й. (федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»),

Динкелакер Н.В. (федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО») Научный руководитель — доцент к.т.н. Агаханянц П.Ф.; (федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»)

Введение. Сплошные рубки леса в средней европейской тайге являются наиболее мощным нарушением лесных экосистем. Площади коренных лесов, ненарушенные рубками, сокращаются с каждым годом. История интенсивных лесозаготовок в Республике Коми достаточно давняя, наиболее давние рубки отмечены ранее середины XIX века, и в настоящее время площадь малонарушенных лесных массивов составляет не более 23% площади лесов региона. Остальные леса имеют разную степень и давность нарушенности рубками. Учитывая медленные темпы лесовосстановления в средней тайге, большинство территорий, пройденных рубками и находящиеся на разных стадиях лесовосстановления, длительное время сохраняют ландшафтные изменения, и оказывают влияние на экосистемы наиболее чувствительного компонента гидрологической сети - малых рек. Лесозаготовки в бореальных лесах влияют на гидрологические и эрозионные процессы в различных пространственных масштабах, вследствие чего изменяется баланс тяжелых металлов в системе водосборный бассейн — река, однако характер этих изменений и особенности процессов в эталонных экосистемах для средней европейской тайги изучены мало [1].

Основная часть. В настоящем исследовании проведен анализ содержания тяжелых металлов в донных отложениях 13 рек Республики Коми, имеющих разную степень нарушенности водосборных бассейнов рубками леса. С помощью метода рентгенофлуоресцентной спектроскопии в грунтах было определено массовое содержание 7 тяжелых металлов (Sr, Pb, Zn, Ni, V, Cr, Co) 1 металлоида (As), 3 оксидов тяжелых металлов (Fe₂O₃, MnO, TiO₂) [2].

В результате проведенного исследования установлено, что исследованные реки имеют в целом невысокое содержание тяжелых металлов в донных отложениях, при этом отдельные рек имеют свои гидрохимические особенности. В донных отложениях реках, водосборные бассейны которых значительно повреждены рубками леса, накапливается меньше тяжелых металлов и оксидов, чем в реках, мало нарушенных рубками, что свидетельствует о преимущественно биогенном пути поступления этих веществ в донные отложения, который нарушается после вырубок.

Помимо этого, при сравнении пространственного распределения тяжелых металлов в разных частях русла на примере 2 модельных рек было выявлено, что зона максимального накопления марганца и железа в донных отложениях различается у них различается: у реки с сильным нарушением (более 60%) она наблюдается в среднем течении, у реки с небольшим повреждением (до 20%) - в нижнем течении, что может быть связано с формированием у нарушенной реки зоны с преобладанием восстановительных процессов в донных отложениях ниже по течению относительно зоны рубок.

Выводы. Проведено исследование накопление тяжелых металлов в донных отложениях малых рек Республики Коми, в районах интенсивных лесозаготовки и в ненарушенных условиях. В результате исследования было выявлено пониженное содержание тяжелых металлов в донных отложениях рек с антропогенными нарушениями, в сравнении с реками у которых нет антропогенных нарушений и изменение распределения железа и марганца в суббассейнах.

Список литературы

- 1. Дымов, К.С. Сукцессии почв в бореальных лесах Республики Коми. М.: ГЕОС, 2020. 336 с.
- 2. ГОСТ 33850–2016 Почвы. Определение химического состава методом ренгенофлуоресцентной спектрометрии. URL: https://docs.cntd.ru/document/1200140375 (дата обращения: 26.01.2024).

Динкелакер Н.Ф.Й. (автор) Подпись Агаханянц П.Ф. (научный руководитель) Подпись