МЕТОДИКА ПРИГОТОВЛЕНИЯ СТАНДАРТНЫХ ОБРАЗЦОВ ГРАНУЛОМЕТРИЧЕСКОГО СОСТАВА НА ОСНОВЕ МОНОДИСПЕРСНЫХ СТЕКЛЯННЫХ СФЕР.

Алексеева А.Л. (Университет ИТМО).

Научный руководитель – Кустиков Ю.А., к.т.н. (доцент, Университет ИТМО).

Стандартный образец (CO) - образец вещества (материала) с установленными в результате метрологической аттестации значениями одной или более величин, характеризующими свойство или состав этого вещества (материала).

Правила работы со стандартными образцами устанавливает ГОСТ 8.315-97 «ГСИ. Стандартные образцы состава и свойств веществ и материалов. Основные положения».

Стандартные образцы предназначены для градуировки, калибровки и поверки ситовых анализаторов, метрологической аттестации методик выполнения измерений, контроля показателей точности измерений, выполняемых по утвержденным методикам и так далее.

Целями данного исследования являются изучение методики приготовления CO и исследование характеристик гранулометрического состава на основе монодисперсных стеклянных сфер.

В работе поставлены следующие задачи:

- 1. Ознакомиться с методикой изготовления стандартных образцов гранулометрического состава:
- 2. Научиться работать с вибростендом Octagon Digital;
- 3. Изучить работу оптического микроскопа XSZ 148E и программного обеспечения «Микро анализ и база обеспечений» и «MicrA CanonControl».

Этапы изготовления СО гранулометрического состава:

- 1. Для исследования берется «сырое» вещество, взвешивается на лабораторных весах классом точности 4, а затем просеивается с помощью вибростенда Octagon Digital. Для просеивания берутся 2 сита, размеры ячеек которых указаны в техническом задании к материалу;
- 2. Далее на лабораторных весах выясняется масса материала, которая осталась на поверхности каждого сита в результате просеивания (время просеивания 5 минут);
- 3. Материал СО расфасовывается по партиям;
- 4. В данной работе для исследования методом оптической микроскопии были взяты 100 произвольно выбранных частиц для каждого вещества, из которых были составлены 5 проб по 20 штук;
- 5. Далее определяются метрологические характеристики СО:
 - 5.1. Каждая проба с помощью стеклянной палочки/кисточки равномерно помещается на предметное стекло;
 - 5.2. Подготавливается к работе микроскоп XSZ 148E в соответствии с технической документацией, с помощью программного обеспечения «Микро анализ и база обеспечений» и «MicrA CanonControl» проводятся измерение параметров каждой частицы. Результаты измерений заносятся в электронную таблицу (например, Microsoft Excel).

Исследуемые параметры:

• Средний диаметр частиц для пяти проб $D = \sum_{1}^{5} \frac{D_i}{5}$;

- Контроль однородности партии $r^*=2rac{D_{max}-D_{min}}{D_{max}+D_{min}}*100\%;$ Контроль стабильности партии $r^{**}=2\left|rac{A_d-D}{A_d+D}*100\%\right|.$

Результаты определения метрологических характеристик СО приведены в Таблице 1.

Таблица 1.

Индекс	Результ	гаты изм	ерений С	CMC, D,	МКМ	Среднее	Максимальный	Максимальный
CO	1	2	3	4	5	значение	относительный	относительный
						,D, мкм	размах при	размах
							контроле	показаний при
							однородности	контроле
							партии, %	стабильности
								партии, %
CMC -	55,48	55,51	55,41	55,53	55,45	55,47	2,499	0,24
55								
CMC -	651	665	667	678	675	667	3,64	1,14
650								

Найденное среднее значение партии D будет являться аттестованным значением CO.

Максимальный относительный размах (r^*) полученных значений при контроле однородности не должен превышать норматива контроля равного 2,5%. Можно заметить, что партия СМС – 55 полностью удовлетворяет этому условию, когда как партия СМС – 650 превышает максимальный допустимый норматив контроля.

Максимальное значение относительного размаха (r^{**}) не должно превышать норматива контроля, 3,3%. Максимальный относительный размах стандартных образцов СМС – 55 и СМС – 650 не превышает допустимого значения.

Таким образом, в ходе исследования:

- 1. Изучена методика изготовления стандартных образцов гранулометрического состава методом оптической микроскопии;
- 2. Освоена работа вибростенда Octagon Digital, а также, оптического микроскопа XSZ 148Е и программного обеспечения «Микро - анализ и база обеспечений» и «МістА CanonControl»;
- 3. Получены метрологические характеристики для СО СМС- 55 и СМС -650.

Дальнейшими целями работы являются исследование характеристик стеклянных сфер диаметрами 250, 500, 1200 и 1700 мкм для приготовления стандартных образцов.

Автор	(подпись)	/ Алексеева А.Л. (фамилия, инициалы
Научный руководитель	(подпись)	/ <u>Кустиков Ю.А.</u> / (фамилия,инициалы)
Руководитель ОП	(подпись)	/ <u>Конопелько Л.А.</u> / (фамилия, инициалы)