КРИТЕРИИ ПРОГНОЗИРОВАНИЯ ВОЗНИКНОВЕНИЯ АНОМАЛЬНЫХ ЯВЛЕНИЙ В ГЕОСРЕДАХ

Казанков В. К. (Университет ИТМО) Научный руководитель – д.ф.-м. н., доцент Холодова С. Е. (Университет ИТМО)

Введение. Динамические процессы являются неотъемлемой частью физического мира. Их математические модели широко используются как в теоретических исследования, так и при внедрении передовых технологий в производство. Несмотря на особенности предметных областей, классическим способом описания динамики в системе является использование аппарата дифференциальных уравнений. Каждая динамическая система состоит из некоторых объектов, их состояний и временного потока.

Существует феномен, который до недавнего времени считался особенностью исключительно гидродинамических систем, но оказалось, что первопричина его возникновения заключена в структуре динамики самой системы. Явление называется — Волна-убийца [1, 2], возникает оно, как правило в системах с нелинейной динамикой. Совсем недавно были проведены натурные эксперименты, позволившие впервые сгенерировать волну-убийцу в бассейне при пересечении пары волн под определенными углами [3]. Особенность волн-убийц заключена во внезапности их появления и огромных размерах. Непредсказуемость их появления связана также с тем, что жизненный цикл волны-убийцы представляет из себя периодическое чередование увеличения и уменьшения амплитуды. Феноменологически наблюдение волн-убийц крупного размера может быть связано в свою очередь с тем, что природа таких волн связана с совокупной энергией всех волн выделенной сплошной среды.

Однако появление волн-убийц возможно не только в жидких средах, описывающихся классической гидродинамикой, но и в различных квантово-механических процессах, постоянных относительно запаса энергии системы. На данный момент существует несколько направлений исследования волн-убийц: изучение уравнений математической физики вместе со структурой их решения, а также прогнозирование возникновения волн-убийц. Исследование решений обобщённого уравнения Хироты показало наличие волн-убийц [4, 5].

Для структуризации знаний о волнах-убийцах был разработан аппарат, обобщающий понятие динамической системы, в котором удалось сформулировать необходимые условия существования волн-убийц [6]. В работе сформулирована гипотеза о периодичности возникновения волн-убийц, что согласуется с результатами [7]. Возникает необходимость в формировании ключевых критериев прогнозирования возникновения волн-убийц, с учетом возможной периодики их возникновения. Не меньший интерес представляет взаимосвязь статистических показателей амплитуд среди волн и их взаимосвязью друг с другом.

Основная часть. В настоящей работе предлагается в подтверждение применимости теории о волнах-убийцах рассмотреть динамическую систему, не подчиняющуюся в явном виде гидродинамическим законам. Ожидается, что в рамках таких входных условий возможно найти динамические системы, в которых легко выделяются структурные компоненты, необходимые для описания волн-убийц. В качестве инструмента исследования предлагается прогностическая модель, позволяющая при помощи ретроспективного анализа представить возможность появления волн-убийц в текущей системе. С точки зрения методов математического моделирования будет предложен класс или классы функций, имеющие ряд характеристик, достаточных для описания настоящей модели.

Выводы. Построенный математический аппарат, позволяющий рассматривать произвольную динамическую систему через взаимодействие объектов, и их обмен энергией представляет возможность доказательства существования для некоторых дифференциальных операторов особого нелинейного эффекта, возникающего в сплошной среде, называемого волнами-убийцами. Особенность построения модели способствует распространить методологию обработки временных рядов на любую динамическую систему и прогнозировать возможность возникновения в ней аномальных явлений.

Список использованных источников:

- 1. Куркин, А.А. Волны-убийцы: факты, теория и моделирование / А.А. Куркин, Е.Н. Пелиновский. 2-е изд. Москва; Берлин: Директ-Медиа, 2016. 178 с. ISBN 978-5-4475-5883- 3.
- 2. Stephane Brule, Stefan Enoch, Sebastien Guenneau.: On the possibility of seismic rogue waves in very soft soils. Geophysics (physics.geo-ph); Pattern Formation and Solitons (nlin.PS); Computational Physics (physics.comp-ph); Fluid Dynamics (physics.flu-dyn)
- 3. McAllister M. L., Draycott S., Adcock T. A. A., Taylor P. H., van den Bremer T. S.: Laboratory recreation of the Draupner wave and the role of breaking in crossing seas. J. Fluid Mech. (2019), vol. 860, pp. 767–786. c Cambridge University Press 2018
- 4. Liu, J.G., Zhu, W.H.: Multiple rogue wave solutions for (2+1)-dimensional Boussinesq equation. Chin. J. Phys. 67, 492–500 (2020)
- 5. Liu J. G., Zhu W. H. Multiple rogue wave, breather wave and interaction solutions of a generalized (3+ 1)-dimensional variable-coefficient nonlinear wave equation //Nonlinear Dynamics. − 2021. − T. 103. − №. 2. − C. 1841-1850.
- 6. Kazankov V., Kholodova S.E., Peregudin S.I. Mathematical Modelling of Anomalous Dynamic Processes in Geomedia // Springer Proceedings in Earth and Environmental Sciences 2022, pp. 63-74
- 7. Peng W. Q., Pu J. C., Chen Y. PINN deep learning method for the Chen–Lee–Liu equation: Rogue wave on the periodic background //Communications in Nonlinear Science and Numerical Simulation. 2022. T. 105. C. 106067.
- 8. Kharif C., Pelinovsky E., Slunyaev A.: Rogue waves in the ocean. Berlin: Springer, 2009. 216 pp.

Казанков В.К. (автор) Подпись

Холодова С.Е. (научный руководитель) Подпись