ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ДЕЙСТВИЯ ИНТЕНСИВНОГО ЭНЕРГОПОТОКА НА ПОЛИМЕРНЫЕ МАТЕРИАЛЫ

Бойков Д.С. Федеральное государственное учреждение "Федеральный исследовательский центр Институт прикладной математики им. М.В. Келдыша Российской академии наук"

Разработаны комплексная компьютерная модель термомеханических явлений и методика сквозного моделирования процессов, возникающих в твердом материале в результате действия интенсивных потоков энергии. На примере расчета воздействия на полимерный материал обсуждается динамика нелинейных волновых процессов, приводящих к внутренним разрушениям в образце материала и откольным явлениям. Созданное программное обеспечение может быть использовано при анализе результатов интенсивных энергетических воздействий в инженерной практике, верификации моделей объёмных разрушений и отколов в хрупких материалах, а также валидации широкодиапазонных уравнений состояния.

Введение. В современных инженерных разработках широкое применение нашли численные методики оценки стойкости различных конструкционных материалов – как однородных, так и композиционных, армированных, градиентных и др. Соответствующие исследования существенно облегчают создание материалов, которые по своим параметрам должны превосходить традиционные материалы, например, металлы, и в будущем заменить их в силу технологических, экологических и тому подобных условий. Так, например, хорошо известно, что композитные материалы обладают высокой удельной прочностью, жёсткостью и износостойкостью, что позволяет использовать их для создания новых классов конструкций. Весьма активно проводятся работы по использованию этих материалов в аэрокосмической отрасли при проектировании и создании летательных аппаратов. Композитные материалы прочны, не подвержены коррозии, имеют малый вес, что облегчает транспортировку и монтаж изделий на их основе. По этим причинам активно изучается вопрос об использовании композитных материалов для магистральных трубопроводов, в частности, проектируемых для эксплуатации в северных регионах. Подобных примеров можно привести множество, что говорит об актуальности разработки прикладного программного обеспечения исследований в данной предметной области.

Одним из факторов, сдерживающих широкое распространение новых материалов при создании испытывающих нагрузки конструкций, является отсутствие в настоящий момент достаточно полной теории поведения конструкционных материалов при различных режимах нагружения, что вызывает необходимость проведения больших объемов экспериментальных исследований для определения характеристик композитов с целью последующего включения в полуэмирические теории. Однако экспериментальное исследование свойств, включая определение условий разрушения материалов, представляет собой трудоемкую и дорогостоящую задачу. В связи с этим актуальным является создание средств предсказательного моделирования, которое становится все более надежным благодаря применению высокопроизводительной техники, допускающей моделирование процессов на сильно различающихся пространственно-временных масштабах. Надо отметить особую важность разработки средств предсказательного моделирования для анализа процессов при динамическом, интенсивном нагружении.

Основная часть. Вычислительные эксперименты с набором моделей поведения материалов являются инструментом для определения их прочностных характеристик посредством решения обратных задач с использованием данных многопараметрических численных исследований и экспериментальных результатов. В связи с этим большое значение приобретает верификация созданных кодов и методик на экспериментальных данных, в том

числе и для материалов с известными свойствами. После верификации модели ее можно использовать для полномасштабного моделирования реальных конструкций с целью анализа их прочности при различных воздействиях. В настоящей работе разработана и описана комплексная методика моделирования разрушения полимерных материалов под действием интенсивных потоков энергии. Для верификации расчета использовались теоретические оценки и экспериментальные данные, полученные в НИЦ "Курчатовский институт" на сильноточном электронном ускорителе "Кальмар".

Предложена методика сквозного моделирования термомеханических явлений в твердом материале под действием интенсивных потоков энергии.

Методика реализована путем построения интегрально-согласованных конечноразностных аппроксимаций уравнений широкодиапазонной модели на неструктурированных сетках общего вида. Соответствующий код для моделирования нагрева, испарения, динамики испаренного пучком электронов вещества, возникающих волн и разрушений в неиспаренной твердой части образца материала апробирован в виде предметноориентированной версии кода, включенного в состав цифровой платформы MARPLE (ИПМ им. М.В. Келдыша РАН).

В практической части работы рассматривалось воздействие сильноточного РЭП на образцы из эпоксидной смолы. Моделирование с широкодиапазонными уравнениями состояния на основе полуэмпирической модели QEOS для описания жидкой и твердой фазы вещества при низких температурах. На основании расчетов была оценена скорость разлета плазмы с облучаемой поверхности, масса испаренного вещества и импульс механического давления в образце. Для калибровки моделей и оценки точности расчетов использовались экспериментальные данные НИЦ "Курчатовский институт". Сопоставление этих параметров с экспериментальными результатами НИЦ "Курчатовский институт" использовалось для калибровки широкодиапазонных УРС. Воспроизведена характерная область разрушения на передней поверхности образца, вызванная высокотемпературным воздействием.

Выводы. В результате численного моделирования получены две характерные области разрушения: область разрушения в объёме в форме «розетки» и область тыльного откола. Характерные размеры разрушенных областей хорошо согласуются с экспериментом. Следует отметить, что механизм возникновения разрушения внутри мишени, вызванного растягивающими напряжениями под действием квазисферических волн, является принципиально трёхмерным.

Варьирование прочностных характеристик материала ведёт к заметному изменению размеров разрушенной области. Таким образом, после верификации модели на экспериментальных данных ее можно использовать для анализа прочности конструкций. На основании результатов расчетов, теоретических оценок и экспериментальных результатов был сделан вывод об эффективности сквозного моделирования действия РЭП на лицевую поверхность мишени, с последующим испарением материала, формированием импульса давления и движением упругопластических волн, приводящих к разрушениям в неиспаренном материале. Предложенная в данной работе методика отличается большей универсальностью и эргономичностью, пригодна для моделирования длительных воздействий и разрушений разного типа.

Бойков Д.С.		