УДК 621.56

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ПРОТОТИПА ИННОВАЦИОННОЙ СИСТЕМЫ ПЛИТОЧНОГО ЗАМОРАЖИВАНИЯ С ИСПОЛЬЗОВАНИЕМ МИКРОВОЛН

Макатов К. (Университет ИТМО)

Научный руководитель – ассистент, к.т.н Булькран М.С. (Университет ИТМО)

Аннотация

Целью этого исследования является численное моделирование прототипа инновационной системы плиточного морозильного аппарата с использованием микроволн. В ходе работы был проведен расчет теплопритоков в камере замораживания продукта, для вычисления требуемой изоляции камеры и подбор холодильного оборудования.

Введение

В пищевой промышленности одним из наиболее распространенных методов консервации продукта, является заморозка. При замораживании продукты сохраняют внешние и качественные показатели в течении долгого времени, так как холод снижает скорость химическую и биологическую активность внутри него.

Качество замороженного продукта, зависит от размеров кристаллов льда. Чем меньше кристаллы, тем меньше они повреждают клеточную структуру тканей продукта. Как известно, качество замороженного продукта можно улучшить с помощью более быстрого замораживания, чтобы образовывалось большее количество центров кристаллизации, тем самым уменьшая средний размер кристаллов, но уменьшение времени замораживания увеличивает затраты на энергию. Нахождение оптимального метода заморозки по времени и количеству затрачиваемых ресурсов является перспективной задачей на данный момент времени.

Основная часть

Инновационным направлением процесса заморозки продукта, технологий для уменьшения кристаллов льда, на данный момент является использование ультразвука, магнитных полей, электрических полей переменного и постоянного тока.

Замораживание с помощью электромагнитных волн является одним из наименее изученных процессов, хотя некоторые исследования представили интересные результаты.

В экспериментах, проводимых с 1992 года по наше время, были получены результаты о лучшем сохранении структуры продукта и образовании более мелких кристаллов льда, при дополнительном облучении продукта микроволнами на частоте 2,45 ГГц. Использовались разные методы заморозки: контактным методом, с пластиной из меди при температуре -190 °С.; криогенное замораживание с помощью азотного распылителя; воздушное замораживание при температуре -30 °С. В моей работе был использован контактный метод замораживания с помощью двух пластин, при их температуре -40 °С.

Требовалось рассчитать теплопритоки в камере замораживания продукта, для вычисления требуемой изоляции камеры и подбор холодильного оборудования

Выводы

По итогам работы, были рассчитан и подобрано холодильное оборудование, для установки, в которой происходит заморозка продукта контактным методом, и излучение микроволнами на частоте $2,45\ \Gamma\Gamma$ ц

Макатов К. (автор)	
Булькран М.С. (научный руководитель)	