УДК 004.75

НАДЕЖНОСТЬ ОТКАЗОУСТОЙЧИВЫХ КЛАСТЕРНЫХ СИСТЕМ С УЧЕТОМ КОНТРОЛЯ

Деркач А.Н. (федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»),

Носков И.И. (федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»)

Научный руководитель – д.т.н. Богатырев В.А.

(федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»)

Аннотация. Рассмотрена марковская модель надежности отказоустойчивого кластера с использованием средств контроля которые обеспечивают непрерывность вычислительного процесса в случае сбоя физических ресурсов серверов. Цель работы - выбор и обоснование организации контроля компьютерной системы кластерной архитектуры с миграцией критически важных вычислительных процессов.

Введение. Для кластерных вычислительных систем, в особенности реального времени, ключевым является обеспечение надежности и отказоустойчивости при поддержке непрерывности вычислительного процесса. Достижению высоких и стабильных показателей производительности, надежности, отказоустойчивости и безопасности компьютерных систем способствует применение технологий кластеризации и виртуализации, сопровождаемых репликацией и миграцией виртуальных машин между физическими серверами.

Основная часть. Одним из эффективных способов достижения отказоустойчивости вычислительных процессов является миграция виртуальных ресурсов между физическими узлами кластера. Компьютеры в сети, выполняющие критически важные задачи дублируются компьютерами, выполняющими фоновые задачи. В случае отказов основных компьютеров или жестких дисков, происходит миграция критических вычислений на резервные с помощью технологии отказоустойчивости. Предложены варианты организации восстановления отказоустойчивого кластера в случае отказов физических ресурсов. Система контроля оказывает существенное влияние на надежность, снижения рисков, связанных с отказами и нарушениями непрерывности вычислительных процессов. Представленные модели ориентированы на исследования влияния введения тестового контроля и его периодичности на коэффициент готовности и уровень безопасности кластера.

Модель в системе имеет тестовый контроль памяти. В случае отказов памяти система будет продолжать работу в опасном состоянии из-за отсутствия оперативного контроля памяти. При переходе в состояния тестового контроля, будут обнаружены ошибки памяти и произведены восстановительные работы.

Предполагается что при обнаружении отказов вычислительных устройств в процессе восстановления проводится тестирование в ходе которого выявляются опасные состояния необнаруженных отказов памяти.

Для контроля правильности вычислений в кластере установлена система тестового контроля. Тестовая система контроля проверяет с заданной периодичностью вычислительную систему. Период проверки вычислительной системы может быть изменен в зависимости от критичности к беспрерывной работе системы и к правильности системы.

Если во время теста отказывает система хранения, то осуществляется переход в тестовое состояние с отказом. Если отказывает сервер, то в после теста, компьютер перейдет в состояние отказа сервера, который будет мгновенно обнаружен оперативным контролем.

Выводы. Показано существенность влияния требования обеспечения непрерывности вычислительного процесса на надежность систем кластерной архитектуры. Результат исследования получены на основе марковских моделей надежности отказоустойчивого кластера с миграцией виртуальных машин. Модель с тестовым контролем отказов памяти является более точной и приближенной к реальности. Она учитывает переходы системы в состояния тестового контроля, в которых обнаруживаются отказы памяти. Отказы вычислительных серверов имеют идеальный оперативный контроль и обнаруживаются мгновенно. При отказе серверов во время ремонта проводится диагностика, включающая в себя тестирование и ремонт памяти в случае отказов.

Деркач А.Н. (автор)

Подпись

Богатырев В.А. (научный руководитель)

Подпись