ИЗУЧЕНИЕ СВОЙСТВ НЕПРИКРЕПЛЕННЫХ БИОПЛЕНОК

Смирнова С. Э. (Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»),

Цветикова С. А. (Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»), **Серов Н. С.**

(Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»)

Научный руководитель – к. б. н. Кошель Е. И.

(Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»)

Хронические инфекции зачастую вызваны образованием неприкрепленных биопленок, так как они с трудом поддаются лечению антибиотиками. В ходе нашей работы была подобрана модель для изучения таких биопленок, изучены характеристики сформированного в ней агрегата. Была проверена антибактериальная активность полых круглых ватеритных частиц с канамицином.

Введение. В естественных условиях бактериальные клетки имеют тенденцию к слипанию в многоклеточные агрегаты, которые могут являться одной из стадий формирования и Неприкрепленных биопленки распространения биопленок. обладают повышенной устойчивостью к антибиотикам, что может быть обусловлено структурой агрегата – плотным центром и рыхлым внешним слоем. Поскольку такие агрегаты отличаются от биопленок, выращенных на твердой поверхности in vitro, необходим подбор модельной системы для их изучения и использование этой системы для поиска эффективного антибактериального средства для борьбы с ними. Существует два основных метода культивирования агрегатов: использование пористых субстанций и образование агрегатов вокруг белков. В первом случае сложность заключается в извлечении агрегатов, во втором - в стоимости и доступности компонентов среды. В данной работе рассматривается применение альтернативного метода – магнитной левитации.

Основная часть. Для изучения феномена неприкрепленных биопленок была использована магнитная камера — система, использующая магнитное поле для создания левитации. Такая система позволила сформировать бактериальный агрегат и изучить его свойства. Более того, данная система в отличие от аналогов позволяет увидеть структуру агрегата невооруженным глазом. Микроскопическое исследование полученной биопленки с помощью сканирующего электронного микроскопа показала везикулярную структуру матрикса. Конфокальная микроскопия показала, что матрикс у агрегата плотнее, чем у прикрепленных биопленок. Проверка агрегата на чувствительность к антибиотикам показала, что он обладает повышенной устойчивостью к ним. В качестве антибактериального агента для данного вида биопленок могут быть использованы наночастицы. Для агрегата, сформированного штаммом Staphylococcus aureus 209P, были использованы ватеритные сферы с канамицином, Преимущество данных частиц в том, что они доставляют антибиотик к биопленке, биосовместимы и показали свою эффективность против прикрепленных биопленок. Для того, чтобы определить эффективность данного вида наночастиц был использован высев на количество колониеобразующих единиц (КОЕ) в мл.

Выводы. В результате изучения сформированных в изучаемой системе агрегатов можно заключить, что магнитная камера является подходящей системой для исследования неприкрепленных биопленок. Добавление ватеритных частиц с канамицином позволило уменьшить КОЕ/мл на несколько порядков, что позволяет рассматривать их как возможный способ борьбы с неприкрепленными биопленками.

Смирнова С.Э. (автор) Подпись

Кошель Е.И. (научный руководитель) Подпись