Оценка перспектив реализации проекта создания вседорожной инвалидной электроколяски на гусеничном ходу

Шикляев Д.С. Университет ИТМО

Научный руководитель – к.б.н., доцент Алексеев Д.А. Университет ИТМО

В данном докладе рассматривается статистика по инвалидности, типы конструкций инвалидных электроколясок и целью улучшения их проходимости предлагается использовать новое устройство. Проект включает в себя замену обычной ходовой части, который представлен в виде колёс, на аналогичный в виде гусеничного модуля. В ходе работы производится оценка перспектив реализации этого проекта.

Введение. По данным Всемирной организации здравоохранения (ВОЗ), более миллиарда людей во всем мире живут с той или иной формой инвалидности, почти 200 миллионов из которых являются инвалидами. Ежегодно количество лиц с ограниченными физическими возможностями растет от 10 до 15%. Они представляют собой самую многочисленную группу меньшинств [1].

В России же, согласно данным Федерального Реестра Инвалидов (ФРИ) на 1 марта 2020 года это количество составляет 11,47 млн. человек, что составляет около 7,6% всего населения нашей страны [2].

Цель работы: Оценка проекта вседорожной инвалидной электроколяски на гусеничном ходу. Конструкция должна позволить преодолевать различные препятствия городской среды, включая лестницы.

Основная часть. Инвалидная электроколяска предназначена для самостоятельного передвижения инвалидов (с нарушениями работы конечностей) в помещении и на улице. Это средство приводится в движение от электропривода. К коляске могут добавляться различные функции. например: наклон кресла, спинки, а также вертикальный подъём сидение и другие функции необходимые для комфорта и здоровья владельца.

Существует огромный спектр различных конструкций электроколясок: от переносных, которые легко складываются и демонтируются, до громоздких и тяжёлых с большим количеством функций. Всё зависит от условий использования коляски.

Проведя патентный поиск были выявлены наиболее важные изобретения в этой области. Больше всего разработано патентов на использование гусениц в конструкции инвалидных кресел (8 патентов), а также различные шагающие механизмы (7 патентов). Наименьшее количество патентов выявлено с использование трансформируемых колёс (4 патента) [3].

Анализируя патенты с использованием гусениц можно прийти к выводу, что в большинстве из них гусеницы используются не как основной движитель, а лишь являются выдвижной конструкцией (RU 2434 C1), которая находится в рабочем положении лишь при пересечении препятствий. И инвалидные коляски с подобным типом конструкции уже есть в

продаже, например, коляска ступенькоход Caterwil GTS3. Недостатком такой системы можно считать, то что пользователь должен находится спиной вперёд при преодолении лестничных маршей и иных препятствий.

Также есть патенты на накидные гусеницы на колёсную базу (Патент RU 183 677 U1). Эту идею использует в своих колясках компания OBSERVER.. Недостатком этого решения является большая стоимость звеньев гусениц.

Шагающие механизмы и конструкции с сегментированными и трансформируемыми колёсами будут малопригодны для условий бездорожья, будут иметь ограниченный функционал, а также будут трудозатратны при производстве.

Выводы.

В ходе работы представлен проект «Вседорожной инвалидной электроколяски на гусеничном ходу», разрабатываемая конструкция позволит инвалидам передвигаться без посторонней помощи через различные барьеры городской среды, а также даст возможность двигаться по бездорожью.

Кроме того, в рамках работы произведен анализ существующих инвалидных электроколясок, способных передвигаться по лестницам и по другим препятствиям. Анализируя указанные в работе патенты и разработки можно сделать вывод, что основными факторами, которые стоит учесть в ходе проектирования нашей конструкции гусеничного модуля будут являться: устойчивость на дороге, мобильность, достаточный уровень комфорта и безопасности. Для достижения этих целей нужно выбрать оптимальные размеры для конструкции, продумать систему хранения АКБ и выбрать оптимальный вариант двигателя электроколяски, который бы смог обеспечить максимальную проходимость

Руководствуясь информацией о существующих продуктах и патентах, будет составлено ТЗ на конструкцию и по ней был произведён выбор комплектующих для реализации проекта. Далее, с помощью программных средств КОМПАС-3D будет составлена сборка, чертёж общего вида сборки и ведомость входящих деталей.

Список литературы

- 1. Всемирная организация здравоохранения. Всемирный доклад об инвалидности [Текст] 2011 г. -311 с. URL: https://www.who.int/disabilities/world_report/2011/report
- 2. Федеральная государственная информационная система. Федеральный реестр инвалидов [Электронный ресурс]. URL: https://sfri.ru/
- 3. Электронная база данных ФИПС (Федеральный Институт Промышленной Собственности) [Электронный ресурс]. URL: https://www1.fips.ru/ (дата обращения: 17.05.2020)

Шикляев Д.С.		
Алексеев Д.А.		