УДК 547.995.15:620.3

ВЛИЯНИЕ ТЕХНОЛОГИЧЕСКИХ ПАРАМЕТРОВ НА МОРФОЛОГИЮ НАНОВОЛОКОН НА ОСНОВЕ ГИАЛУРОНОВОЙ КИСЛОТЫ

Снетков П.П. (Университет ИТМО), Морозкина С.Н. (Университет ИТМО), Олехнович Р.О. (Университет ИТМО), Баранов М.А. (Университет ИТМО) Научный руководитель – д.т.н., профессор Успенская М.В. (Университет ИТМО)

В работе рассмотрены основные технологические параметры процесса электроспиннинга и оценено их влияние на морфологию нановолокон на основе гиалуроновой кислоты. Установлен оптимальный диапазон задаваемых параметров, при котором обеспечивается стабильность процесса получения волокон. Показано, что за счёт варьирования электрического напряжения и объёмного расхода прядильного раствора можно контролировать свойства нановолокон и выход продукта.

Введение. Текущий уровень развития биоинженерных и биомедицинских технологий и систем требует наличия современных волокнистых материалов, способствующих адгезии и росту клеток, заживлению ран и ожогов, пролонгированной и адресной доставке лекарственных средств. Наиболее подходящим полупродуктом для таких волокнистых материалов являются нано- и микроволокна на основе природных полимеров, таких как коллаген, фиброин шелка, хитозан, гиалуроновая кислота и т.п.

Гиалуроновая кислота является наиболее перспективным полимером для использования в биоинженерных и медицинских приложениях. Благодаря тому, что нативная гиалуроновая кислота присутствует в межклеточном, околоклеточном и внутриклеточном матриксах, обеспечивается полная биосовместимость и биодеградируемость препаратов и материалов на её основе. По этой причине гиалуроновую кислоту успешно применяют в качестве основного компонента глазных капель, косметических средств, внутрисуставных инъекций и заживляющих гидрогелей. Однако в настоящее время отмечается острая потребность в волокнистых материалах на основе гиалуроновой кислоты. Их получение и исследование, несмотря на трудоёмкость, является особенно актуальной задачей.

Существует несколько основных способов получения нановолокон: метод вытягивания, метод нанофильер (основан на «мокром» коагуляционном методе), электроспиннинг и магнитоспиннинг. Последний метод в настоящее время ещё не получил широкого распространения, однако имеются достаточные основания полагать, что в ближайшее десятилетие метод найдёт применение в науке и промышленности и сможет конкурировать с электроспиннингом.

Электростатических сил из растворов/расплавов полимеров, в том числе гиалуроновой кислоты. Однако по причине высоких значений вязкости и электропроводности водных растворов гиалуроновой кислоты, низкой скорости испарения растворителя, процесс получения нановолокон на основе гиалуроновой кислоты методом электроспиннинга затруднён. В этой связи применяют различные подходы, например, бинарные и тернарные системы растворителей, а также добавление модифицирующих полимеров, таких как полиэтиленгликоль и поливиниловый спирт. Очевидно, что состав прядильного полимерного раствора может влиять как на сам процесс формирования нановолокон, так и на морфологические, физико-механические, физико-химические и биологические свойства получаемых полимерных нановолокон.

Помимо рецептуры прядильного раствора и его физических характеристик, существенное влияние на процесс электроспиннинга оказывают технологические параметры, такие как уровень приложенного напряжения, объёмный расход полимерного раствора, расстояние между прядильным и осадительным электродом, типоразмер формующей иглы (фильеры).

Стоит отметить, что в случае с гиалуроновой кислотой критически важно контролировать и, по возможности, поддерживать определённый уровень влажности и температуры окружающей среды.

Основная часть. Одним из важнейших технологических параметров процесса электроспиннинга является уровень приложенного электрического напряжения. В зависимости от применяемого оборудования верхняя граница задаваемых значений может колебаться от 20 до 100 кВ, что, в свою очередь, накладывает определённые требования безопасности при работе с приборами. В применяемой нами установке электроспиннинга NANON-01A (МЕСС СО., LTD, Япония) диапазон приложенного напряжения составляет от 0,5 до 30 кВ, что подходит для большинства прикладных задач.

В процессе исследований было обнаружено, что растворы гиалуроновой кислоты имеют нижнюю границу начала волокнообразования около 12-15 кВ, однако процесс электроспиннинга при этом нестабилен. Оптимальный диапазон напряжений, при котором обеспечивается стабильное волокнообразование, — от 20 до 30 кВ. При этом с увеличением напряжения происходит уменьшение среднего диаметра образующихся нановолокон. Полученная зависимость среднего диаметра волокон от приложенного напряжения подтверждается литературными данными. Однако в ряде случаев исследователи отмечали незначительное влияние напряжения на морфологию волокон на основе гиалуроновой кислоты, что может быть обусловлено особенностями используемого оборудования и рецептурой прядильных полимерных растворов.

Скорость подачи раствора является вторым по важности технологическим параметром, влияющим как на процесс электроформования в целом, так и на морфологию волокон и их выход в частности. Было установлено, что зависимость носит прямой характер: с увеличением объёмного расхода полимерного раствора наблюдается увеличение среднего диаметра нановолокон. При этом определён оптимальный диапазон скорости подачи раствора, вне рамок которого может происходить дестабилизация процесса электроспиннинга и возникновение дефектов в виде капель и оборванных волокон. В литературе имеются сведения о максимальном «граничном» значении среднего диаметра волокна, который невозможно превысить даже при дальнейшем увеличении скорости подачи раствора.

Выводы. Проведённые исследования позволили определить оптимальный диапазон основных технологических параметров, обеспечивающих стабильность протекания процесса электроспиннинга и получения нановолокон на основе гиалуроновой кислоты с заданной морфологией. Таким образом, была показана возможность варьирования приложенного электрического напряжения и объёмного расхода полимерного расхода для получения полимерных нановолокон с необходимым комплексом свойств. Ожидается, что полученные результаты могут быть использованы для разработки перспективных волокнистых материалов, применяемых в тканевой инженерии в качестве клеточных каркасов и раневых покрытий.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 19-33-90098.